An investigation on interarea mode oscillations of interconnected power systems with integrated wind farms
نویسندگان
چکیده
The ever-increasing penetration of wind power integration into a power system can produce significant impacts on the operation of an interconnected power system. As the major energy conversion technology for large wind turbines, the doubly fed induction generator (DFIG) will play an important role in future power systems. Hence, the impacts of the DFIG on the low-frequency oscillations of interconnected power systems have become an important issue with extensive concerns. This paper examines the impacts of several factors, including the DFIG transmission distance, tie-line power of the interconnected system, DFIG capacity, with/without a power system stabilizer (PSS), on the low frequency oscillation characteristic of an interconnected power system using both eigenvalue analysis and dynamic simulations. To investigate the effects of these factors on the interarea oscillation mode, case studies are carried out on two two-area interconnected power systems, and some conclusions are obtained. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Two-Stage Stochastic Day-Ahead Market Clearing in Gas and Power Networks Integrated with Wind Energy
The significant penetration rate of wind turbines in power systems made some challenges in the operation of the systems such as large-scale power fluctuations induced by wind farms. Gas-fired plants with fast starting ability and high ramping can better handle natural uncertainties of wind power compared to other traditional plants. Therefore, the integration of electrical and natural gas syste...
متن کاملDynamic Stabilization of Wind Farms Deploying Static Synchronous Series Compensator
Encountering series-compensated transmission lines, sub-synchronous resonance (SSR) may strike the power system by jeopardizing its stability and mechanical facilities. This paper aims to verify the capability of static synchronous series compensator (SSSC) in mitigating the mechanical and electrical oscillations such as SSR in wind farm integrations. A wind turbine with a self–excited inductio...
متن کاملComparison of the effects of two flatness based control methods for STATCOM on improving stability in power systems including DFIG based wind farms
Power grids are complex, interconnected and nonlinear systems, and this will be more severe when they are subjected to high wind resources penetration. Static synchronous compensators (STATCOM) are used to improve voltage regulation and to meet grid codes in power systems, including doubly fed induction generators (DFIG) based wind farms. Despite the nonlinear nature of STATCOM, the conventiona...
متن کاملRobust Power System Stabilizers: a Frequency Domain Approach
Presently, there are two main aspects which allow to reduce the operating as well as the cold reserve power to be kept ready by individual network partners in order to maintain the power system reliability. First, the transmission lines, generators and loads are interconnected into large-scale and complex integrated systems. An important benefit brought about by the interconnected operation is ...
متن کاملDesign of Fuzzy Logic Based PI Controller for DFIG-based Wind Farm Aimed at Automatic Generation Control in an Interconnected Two Area Power System
This paper addresses the design procedure of a fuzzy logic-based adaptive approach for DFIGs to enhance automatic generation control (AGC) capabilities and provide better dynamic responses in multi-area power systems. In doing so, a proportional-integral (PI) controller is employed in DFIG structure to control the governor speed of wind turbine. At the first stage, the adjustable parameters of ...
متن کامل